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ABSTRACT

A theory of the complex Doppler effect of an oscillating electro-
magnetic source moving uniformly through a homogeneous dispersive
medium is presented. The analysis is based on a method of asymp-
totic evaluation of a certain threefold Fourier integral. The
theory presented and the results obtained in this paper generally
differ from those already reported in the literature. To 1llus-
trate the effect a few special cases are worked out in detail.
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I. INTRODUCTION

It is well known that the color of radiation emitted by a
harmonic light source moving relative to an observer varies
with time. This 1is the familiar Doppler effect. When such a
source 1s moving through a dispersive medium, however, a new
feature arises. The radiation incident upon an observér may
have several spectral components although the source is oscll-
lating at a single frequency. This phenomenon of frequency
splitting is called the complex Doppler effect and has been
studied by Frank1 in connection with the problem oflcalculating
the radiation field of an oscillating dipole moving uniformly
through a homogeneous, isotropic, dispersive medium. Barsukovg,
Barsukov and KolomenskiiB, and others4 ha&e extended Frank's
analysis to homogeneous, anisotroplic, dispersive media, such

as the magneto-ionic medium.

Frank's method of analysis is basically as follows. The moving
oscillating dipole is first spectrally analyzed info a harmonic
line source. Then, the time-harmonic Maxwell equations are
solved and the spectrum of fthe far field is obtained. Frank
notes that for a dispersive medium the spectrum may peak

at several frequencles, whereas in a non-dispersive medium

1t peaks only at one frequency which 1s the ordinary Doppler-
shifted frequency. The frequencies at which the spectrum peaks
are determined by solving for w the Doppler equation

1

w=v w' + Bwn(w) cos 8, (1)

o)

where mé = proper frequency of the source, w = wave frequency
measured by a distant observer at rest in the medium, n = refrac-
tive index, y = (1—32)’%, 8 = v/c, 8 = angle between the veloclty
v of the source and the wave vector k. Equation (1) in general

admits several roots for w since the refractive index can be a
complicated function of w. Thus Frank and his followers



conclude that at a given direction 6 a distant observer may
find several distinct frequencies in the radiation field, i.e.,
several wave packets whose main frequencies are determined by
eq. (1). However, they can not ascribe any physical inter-
pretation to thelr results and the origin of the complex Doppler
effect remains a mystery.

Actually, the Doppler eq. (1) just connects the frequencies of

a homogeneous plane wave observed in two different inertial
frames K and K’, with K’ moving relative to K at a constant
velocity v. If the plane wave measured in K consists of several
spectral components, then in K’ the wave appears to be a
harmonic wave made up of a bundle of plane waves with the same
frequency wé but with different propagation directions. This
can be seen from the aberration formula-

tan g/ = L —_tan ® , (2)
Y

1-5&78606

8’ being the angle between v andlg'. Here and henceforth, the

primed quantities are always referred to K’ while the unprimed
quantities are always referred to K. Thus, according to Frank's
analysis the far field in K’, the reference frame in which the
osclllating source is at rest, 1s a monochromatic wave oscil-
lating at the source frequency and consisting of a bundle of
plane waves, whereas in K this bundle of plane waves becomes

a polychromatic plane wave with a unique direction of propaga-
tion; that is to say, the radiation incident upon a distant
observer at a given direction consists of several wave packets.
From a physical viewpoint this is impossible since the group
velocity takes different values at different frequencies for a
given direction of propagation. Therefore, at any time the
distant observer cannot recelve more than one wave packet at a
glven direction. From a mathematical viewpoint the anaiysis of



Frank and his followers is equally unacceptable since they
identlfy the spectrum of the far field of an oscillating line
source with the spectrum of the radiation field of a uniformly
moving osclllating point source. The identification is permis-
sible only for the spectrum of the full field but is not
permissible for that of the far field alone. Moreover, in a
complicated medium such as the magneto-ionic medium, the
"outgoing-wave condition" in the frequency-domain is not
necessarily the counterpart of the "retardation condition" in

the time-domain, both being the commonly used radiation condition.

Although the analysis of Frank and his followers is of dubious
validity, thelr predictlon of the existence of the complex
Doppler effect in a dispersive medium is correct. In the
following we shall present a method, which is mathematically
rigorous, for calculating the radiation field of an oscillating
source moving uniformly through a homogeneous, lossless,
dispersive medium. The method is to express the field as a
superposition of plane waves by a threefold Fourier integral
with the radiation condition built in the integrand and then

to estimate the integral asymptotically to get the radiation
field in space and time. Our mathematical results prove the
cXlstence of the complex Doppler effect in a dispersive medium.
The origin of the effect is found in examining the group
velocity of each individual wave packet arriving at a distant
observer. The wave packets, each of which has its own charac-
teristic spectrum, were actually emitted by the moving source
at different time, propagate to the observer at different
directions and at different group speeds, and finally reach the
observer simultaneously. From the viewpoint of the observer
the wave packets were emitted by different sources at different
locations.

The remainder of this report is divided into two parts. The
first part contains the mathematical theory of the method for
solving the general problem of finding the radiation field of
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an osclllating source traversing a homogeneous dispersive

medium. The theory is then applied in the second part to a few
special cases where the mathematics remains tractable: an
oscillating source travels through (i) a vacuum, (ii) an isotropic
cold plasma, and (iii) a cold plasma biased by a strong magneto-
static field such that the gyro-frequency is much larger than the
plasma and the wave frequency. Only in case (iii) does the
complex Doppler effect arise. According to Frank's analysis,
however, the effect should also occur in case (1ii), whereas

according to our analysis there can be no frequency splitting.



II. THEORY

A. FORMULATION OF THE PROBLEM

In order to avoid the unnecessary mathematical complications
which arise from Lorentz contraction for bodles of finite size,
we shall consider only an electromagnetic point source. To

fix ideas we shall assume the point source to be an oscillating
electric dipole moving at a constant velocity v through a
homogeneous medium of infinlte extent. Alfhough we are consid-
ering a very particular source, no essential features will be
lost regarding the phenomenon of complex Doppler effect.

Let us consider two inertial frames of reference K and K/, K
being the rest frame of the medium with respect to which K’ 1is
moving at the constant velocity v. Thus, our oscillating electric
dipole is at rest in K’ and we have for the external electric

and magnetic polarization vectors gé and‘Mé the following
expressions:

-iwét'
B, =p's(r") e (3)
M =0,

where p’ is the electric dipole moment and wé is its proper
frequency. With respect to K we then have

-1lw't’
1-
- L'+ S wwp’] slze (4)
. 2 [
—iwot
M= vyp’' x v 8(xr')e ,

We now transform (r‘,t’) to (r,t) in eq. (4) by means of the
Lorentz transformations. For convenlence v 1is taken to be
along the z and z’ axes. Thus,



x' =x, y' =y, 2’ = y(z-vt), t' = y(t-vz/c?),
by means of which we have

/ 2
-lwlt’ -1y (t-vz/c%)

8(x")o(y")e(z")e 8(x)8(y)slv(z-vt)ie

—iy—lwét

v s(x)s(y)s(z-vt)e

The last expression follows by setting z=vt in the exponent of
the second expression. This is permissible because of the
presence of §(z-vt). Generalizing the above expression for
arbitrary direction of V, we have

-1wlt’ 1 -lw t
s(r’)e =y “8(r-vt)e , (5)
where
- L
w, =y Tw!
Substitution of eq. (5) into (4) gives
, —l__l , -iwot
p, = [p7 # 1F wvep' ] slzut)e (6)
-iw ¢
’ (0]

With_l_’e and Me as external source functions the Maxwell equations
for non-magnetic, homogeneous, anisotropic and dispersive media
are



= (7)

- 9 =2 B
v X H = 3T £ E + X3 Pe + VvV X o
whence
32 82 d
VXV XE+ uo-gzg E'E= -ug ;25 Py H,g 35 7 X Mo, (8)

where ¢ is a dyadlc integral operator and i1s defined as

t
&5 5 Ej = Im eij(t—T)Ej(T)dT,

repeated indices being summed.

Writing

ik.r
=~ a3, (9)

5(5.%) = 5 [f[E0c o)

-

and similar integral representations for Ee’ Me and substituting

them into eq. (8) we have

5 d2 -iwt
(kikJ - K%y - g e eij> Ey(k,t) = Fy(k)e (10)
where @ = w, + k-v and 6y 4 = Kronecker's delta. The operator

sij when acting on the function exp(-iwt) simply multiplies the
function by eij(w). Hence, eq. (10) gives

(adj v, .)F. -iwt
L Je (11)

Ei(E’t) =
det Vij



where ad]j Vij and det Vij denote respectively the adjoint and
determinant of the matrix with elements given by

2 2
Vij=kikj -kaij+wuo eij(w) (12)

Inserting (11) in (9) we have

1o t o N, (w,x) Ik (z-vt)
0 1 1=
— ————— e

1] and w = w, +_lg-_\£.

where N, = (adj ViJ)FJ., D=detV
Our problem now is to evaluate the three-dimensional Fourier
integral (13) for lziytla », 1.e., for observation points very
far away from the trajectory. Before attempting to do so we

note that for lossless media eij is either real symmetric or
hermitian. In this case D will be a real function of k and

will have zeros on the paths of integration. Hence, the integral
(13) has no meaning. However, when the radiation condition is
Introduced either the zeros of D will have to be removed off the
paths of integration or the paths of integration will have to

be modified to avold the zeros of D. The simplest way of intro-
ducling this radiation condition is to replace the source fre-
quency mé by wé + 1¢ (e > 0), and afterwards to let ¢ go to zero.
Physically, this means that the source is slowly turned on as
exp(et - iwot) and we seek solutions of Maxwell's equations of
the order exp(et). The solutions obtained in this way will be
called the outgoing solutions. Thus, we shall have to evaluate,
instead of the integral (13), the following integral:

-iw t o N, (w,k) 1 k- (r-vt)
E;’ut(z,t) =e °© Lim——%” e T T a3k (1)
e*0 8m” __ De(w+1e, k)



for |3ﬁ2t|ﬂ o, The subscript ¢ in D 1s used to distinguish
D(w+ie) from D{w) when the argument is not written out explicitly.

So far we have assumed that the singularities of the integrand
in (14) come entirely from the zeros of De’ neglecting any
possible poles arising from Ni‘ This 1s Jjustified since Ni can
be shown to have no poles.

B. ASYMPTOTIC EVALUATION

Our objective now is to obtain an asymptotic value for Eiut(g,t)
by evaluating the integral in (14) for lEthi + o, We antici-
pate this asymptotic value to come from the zeros of D which are
the only singularities of the integrand. The method of evalu-
ating the integral (14) asymptotically is very familiar in
radiation problems where the far-zone fields from a localized
source are sought. The only difference now is that we shall
speak in general terms to achleve maximum generality, since we
do not wish to specify D, or equivalently the dielectric tensor
eij’ explicitly.

An asymptotic estimate of an integral of the form (14) has been
obtained by Lighthill7 who uses the theory of generallized
functions. Here we shall re-derlive the results 1n a straight-
forward and customary way, vold of the theory of generalized
functions and, moreover, we shall supply in some detall part of
the discussions touched upon in Lighthill's paper.

The method we shall adopt in evaluating the integral in (14)
consists of the calculus of residues and the method of stationary
phase. First, let us choose a coordinate system (€, n, C)

where the g-axls is along r-vt whose magnitude 1s denoted by x
Hence, the integral in (14) becomes



I =11 ‘“,, d4nd (é,mé:w) 1§X
m
€40 -w nd¢ —J‘ D (§ UE) (;,U.H-ie)

dg (15)
for x + ». 'The inner integral can be evaluated by the method
of residues in the complex g-plane. Let gé be one of the
zeros of De and gm the corresponding one of D. Then, expanding

gé around g and assuming for the moment aD/3g at £ = g 1s
non-zero we have, by recalling that w = w, + kv,
D (g’ +e) = I( ) + (e/-z )2D) 4 1(22 -0 (16)
e gm:"ﬂ:g:w €) = im,’ﬂ; Crw Em-ém 3E € aw) R
Sm Sm
whence approximately,
D/ -1
’ 1o |22 g+ 1 (awo\) (17)
€, = &, - 1 |— = e | == .
mem 3D/35 | ¢ " ot e
m m

Here we have used amo/ag = -(3D/38)(aD/aw,) which is obtained
by differentiating with respect to £ and w, the equation

D(g:n:g’wo +_1_{__Y) =0 (18)

Equation (18) describes a surface in the (g£,n,() space and this
surface 1s often called the "wave-number surface."

The inner integral in (15) 1s now evaluated by closing the
contour in the upper g€-plane and, therefore, only zeros of D
having positive imaginary part contribute. By the method of
residues we have

© N igx N ig'X
i i m y
f‘D— 6t = 2ml ) |3prer © , gl >0 (19)
- m € §'
m
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As is evident from (17), the condition Im gé > 0 implies

that
qw

O — .
(a) 1if g is purely real,'gg— >0at g =g ;

(b) 1f g 1is complex, Im g, > 0.

Passing to the 1limit e+o in (19) and substituting the result
into (15) we then have

© Ni igmx |
I=em) [f . e dndc (20)
m - gm -

To estimate (20) for x+=, we divide the infinite domain into

S and R (Figure 1). S is the area of the surface D = 0
projected onto the m{-plane, R the remaining area in the
infinite n{-plane. Clearly, gm(n,g,wo) is real when the point
(ns¢) lies in S; g ceases to be real if the point (n,C) 1lies
outside S. Since x+= and Im g, > O, the integrand in (20) 1s
vanishingly small for points in R and, consequently, this part
of integration can be neglected from integral (20). Thus the
integral we shall have to esftimate for x-« is

igmx

N
I=oeni) [f EE%SE e dndc, (21)
m S

m

where Emn i1s real and therefore lies on the surface D = 0, and

at & = €, awo/ag > O must be satisfied.

To get the term proportional to x"1 from (21), we can use the
method of stationary phase. The stationary points are
determined from the equations

11
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Figure 1. S 1is the projected area of the wave-number
surface, D = 0, onto the n{-plane, R the remalning
area in the infinlite n{-plane.
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3,  3E

—_.——-—m=
an aC 0 (22)

which simply mean that the tangent planes to the surface D = O
at the stationary points are parallel to the n¢- plane Thus
the asymptotic value of (21) is given by

tmi(sgn k_ + sgn k.)
. 4n . E: N/ o n C ezfx
3D/ 38 —
'KnKC|

HereKn,Kgare the two principal curvatures, and z:is the sum
over the points on the surface D = O where Bwo/6§ is positive
and where the normal is parallel to the x-direction.

We are now in a position to write down the asymptotic value of
ESUY given in (14). To do this we simply make the following
substitutions in (23): g X by_gm-(ziyt), KnKQ by

the Gaussian curvature K, and 3D/3E by aD/sk. Then we have

S ] 4 ) o P T (2)

Here E:is summing over the set of points Em on the surface
D = O where the normal 1s parallel to r-vt (the asymptotic
condition) and the component of awo/ag along r-vt is positive
(the radiation condition). The latter condition implies the

the group velocity aw/ag minus v has a positive component along
r-vt.

The amplitude Ai is given by

C Ni

B L HE

1 = (25)

13




where C 1is

(a) =1 when K < O and 3D/3k 1s in the direction of
+(r-vt)

(b) +1 when K > O and the surface is convex to the
direction of +(3D/3k).

In what follows our primary concern will be to examine the
frequencies of the far field and no attention will be paid to
the amplitude Aj{. Although, to be sure, Ai may vanish at some
gm's, that is to say, the modes corresponding to that set of
Em's cannot be excited for a source function of given distri-
bution, we shall not consider this point, but 1instead we shall
study the frequencies of all the possible modes that can be
exclted.

At this point it may be asked if it 1s at all meaningful to
talk about discrete frequency components of the far field since
the fileld radiated by a moving oscillating source actually has
a continuous spectrum. Strictly speaking, the far fleld (24)
has a continuous frequency spectrum because of the presence of
the factor |r-vt| ! and the fact that the locations of the
polints Em on the wave-number surface vary from time to time.
However, both of these factors hardly change over a period of
osclllation and, therefore, most of the radiated energy is

contained in the discrete frequencies W equal to w, gm-v.

Before concluding this section two points should be mentioned.
In the foregoing analysis we have assumed that there were only
simple poles in the complex E-plane and that the Gaussian
curvature was non-zero. At a multiple pole, i.e., a pole of
order greater than one, our previous expression (19) has to

be modified according to the theory of residues, and in this
case the radiation condition can no longer be interpreted in
terms of the group velocity, a physically meaningful quantity.

14



In the situtation where the Gaussian curvature vanishes, an
asymptotic estimate of the two-dimensional integral (21) will
lead to the Airy function which decays slower than the inverse
of a distance. Here we shall not write out the cumbersome
general formula for the case of multiple poles and for the
case of vanishing Gaussian curvature. However, a detailed

discusslion will be given when such situations arise in treating
a specific problem.

15



III. - APPLICATIONS

The general theory set out in the last chapter applies to the
problem of calculatling the radiation field of an oscillating
source of any distribution stationary in or moving through a
linear, homogeneous, lossless medium of infinite extent. The
medium can be dispersive as well as anisotropic. We shall now
apply the general theory to a few cases where the analyses are
mathematically tractable. We shall 1imit, however, our consid-
eration only to the finding of the principal frequencies of
the radiation field and, therefore, the construction of the
wave-number surface for each particular case will suffice, as
was pointed out in section II B.

A. CASE OF A VACUUM

Let us begin with the simplest and yet important case where a
harmonically oscillating source travels at constant speed in g
vacuum. The dispersion equation, D = 0, is well known as

2 4+ g2 - 35 (w, + kv

c

2 2
g + )= =0 (26)
Here, as before, (g€,n,() are the Cartesian components of k.
Without loss of generality we choose the g-axis along v.
Equation (26) then becomes

(1-82)g% + n® + (% - 2Bk g - K2 = O, (27)

where k_ = wo/é. In contrast to the stationary case where the
wave-number surface 1s spherical, eq. (27) describes the surface
of a prolate spheroid whose projJection onto the En-plane is an
ellipse:

2 2
(1-8°)g% + n° - 2k & - k_ = O,

16



or

2 2
(e-8BvKk.) 2
I 20 3 5 = L
Yk Y kg
or
k
K = —2 (28)
1-g cos X

Equation (28) is plotted in Figure 2a. There are only two
points A and B where the normals to the ellipse given by
D(g,n,wo) = 0 are parallel to r-vt. To see if both A and B
satisfy the radiation condition, we construct the surface
D(g,n,wo + Awo) = 0, Aw_ being small and positive. From
Figure 2a we can easily see that the direction from A to A’
is along r-vt, whereas the direction from B to B’ is opposite
to r-vt. Thus at A, (r-vt)-aw,/3k > 0, while at B,
(gfzt)»awo/ag < 0. That is to say (see section II.B), at B
the radiation condition is violated and only A contributes to
the radiation field.

The group velocity u of the wave 1is given by

W

AW 0
w =¥ - _0°% .,y
g g dE
aw 9%

u = e— =

n 3n 3

Evaluating awo/ag and awo/an from (28) we get

Mg SO BETEECC R T C 08 %
u, = EE—E—E; =c % = ¢ sin . (29)

17
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Figure 2a. Cross section (the ellipse in
solid line) of the wave-number surface in
any axlal plane for the vacuum case. The
ellipse in broken line is obtained when
wo 1s replaced by wy + Awy in the disper-
sion equation; Aw, belng small and

positive.
A P
)
u,k r-vt
0

Figure 2b. The corresponding picture of
Flgure 2a in ordinary space. P and A are
respectively the present and retarded
positions of the source. O is the distant
observer. The angles § and X correspond
to those in Figure 2a. AO = ct. AP = vt.
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Thus, as expected, u 1s in the direction of k (see Figure 2b)
and has magnitude equal to ¢, the vacuum speed of light.

Figure 2b plots the relative positions of the observer and the
source at the present and retarded moments. It is a simple
matter to show that the direction from Ao to 0 in Figure 2b
corresponds to the direction of k in Filgure 2a. Thus, by
means of the wave-number surface one can determine with
comparative ease the relation between the present and retarded
positions of the radiating source. The relation between

8 and x in Figure 2a or Figure 2b can be obtained from eq. (28)
and 1s found to be

sin

tan 8 = oo Xs (30)

The variation of the wave frequency w with the angle X can

also be obtained from the wave-number surface Figure 2a.
Since

we find that

(31)

W =TTg cos X  v(1-8 cos X) ’

where, as before, wé is the proper frequency of the source.

A plot of (31) is given in Figure 4c by the curve X = 0.

19



If one wishes, he can also find the amplitude of the radiation
field from eq. (25) for any given source function. However,
this point will not be pursued here.

By the simple example of a vacuum we have shown how the
characteristics of the radiation field can be determined solely
from a knowledge of the wave-number surface.

B. CASE OF AN ISOTROPIC COLD PLASMA

A second simple illustration of the general theory is the case
in which a harmonic source travels through an ionized gas of
vacuum permeability and of permittivity given by

where wp 1s the plasma frequency. In this case the dispersion
equation, D = 0, is

2 w2
K° - E§_+-—% =0
c c

which becomes

e? + 1%+ (% - (k, + BE)° + k° = 0 . (32)

After suppressing the variable (, we have from eq. (32)

2
(é-BY2k0> n°

+
57 58 .\t BD
y (y ko—kp> YKk

= 1. (33)

20



Assume for the moment ko > kp, i.e., X = ki/kg < 1. The
ellipse described by (33) is plotted in Figure 3a, which
shows that there is only one point on the ellipse where the
normal is parallel to r-vt and (gﬁgt)-awo/ag > 0. Hence, it
is concluded that only one wave wlll propagate to the distant
observer.

The rectangular components u_ and u_ of the group velocity u
are found, with the aid of (33), to satisfy the equation of
an ellipse:

(1 + ng)ug + uf] - 2peXu, = ¢?(1-X). | (34)

The group-velocity surface is obtained by rotating this ellipse
about the ug—axis. Figure 3b is a plot of eq. (34), showing
that the wave has a greater speed when the source is approach-
ing.

The relative positions of the observer and the source are
shown in Figure 3c. The angle X in both Figures 3a and 3¢ can
be shown to be the same. From Figure 3a the relation between
the present and retarded positlions of the source is found to
be given by

sin X

tan 6 = Cos X = v7u . (35)

We now proceed to find the wave frequency w as a function of
X from Flgure 3a. First, we substitute n = £ tan x into

(33) and solve for g. Then from w = w, + VE we get

) 1 + B8 cos X Jfﬁwi(i é os ) (36)

b
Yo

which 1s given in Figure 4c by the curve X < 1.
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C g

Figure 3a. Cross section of the wave-number surface
in any axial plane for the case of an isotropic cold

plasma. u 1is parallel to k and equal to the vectorial
sum of awo/ag and V.

lc

Figure 3b. Cross section of the group-velocity

surface in any axial plane for the case of an
isotropic cold plasma.

Figure 3c. Refer to Figure 2b for notation.
A0 = ut. AP = vt.

22



Let us now conslder briefly the variation of Figures 3a and 3c
with X, keeping v constant. As X lncreases, the wave-number
surface and the group-velocity surface start shifting to the
right and at the same time they are decreasing in size.
Finally, as X reaches the value y2, they shrink to a point
and thereafter disappear. The situations are depicted in
Figure 4a and U4b. Figure U4c 1llustrates the variation of the
wave frequency with the angle y and also with X. It shows
that the greater X becomes the smaller the cutoff angle y, 1s.

At X = Yg’ i.e., w' = wp, no radiation occurs at any direction.

o)
It 1s interesting to note that in the stationary case the
radiation field is also cut off at the source frequency equal

to the plasma frequency.

C. CASE OF A DISPERSIVE UNIAXIAL MEDIUM

In the two cases discussed above, the Doppler effect is normal
in the sense that there 1s only one peak in the frequency
spectrum of the radiation field. The simplest example which
wlll exhibit the phenomenon of complex Doppler effect 1s when
a harmonically oscillating source travels through an ionized
gas permeated by a magnetostatic fleld which is so strong that
the gyro-frequency is much larger than the wave frequency and
the plasma frequency. Under such a condition the ionized gas
behaves as a uniaxial medium and the permittivity tensor is
given by

1 0 0
€15 = €o o 1 0 s (37)
L0 0 1-w§/w2

where the z-axls has been chosen along the magnetostatic fileld.
Substituting (37) into (12) we obtaln the dispersion equation,

by setting the determinant V

13 equal to zero,
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X=0

X<1

(4a) (4p)

Figure 4a,b. Variations of cross sections of the wave-number
surface and the group-velocity surface with X. The radiation
condition is not satisfied by points on that part of curves in
broken line.

Filgure 4c. Doppler-shifted frequency
(or the wave frequency) versus y for
different values of X. y_ 1s the
cutoff angle. ¢
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w2 2 w2 \N{, 2 w2
> (34 k- - ? ao)(k - —2') = 0, (38)
C c
where
W= w, kv
w2
a), = 1l - —% cos2 §
W
2
wp
8, =1 -5
Ww
$ = angle between k and the z-axis.

Two cases will be studied separately: in case (1) the magneto-
static field is perpendicular to the plane containing the
trajectory of the source and the observatlon point, and in
case (2) the field is along the motion of the source.

1. Fleld Perpendicular to the Source Motion

Equation (38) 1s simplified further if & = 90° and v is
perpendlcular to the z-axis. In this case eq. (38) reduces to

I R

The case where w = O corresponds to non-radiated field and
thus 1s of no concern to us. This equation, apart from the
factor wu/cu, describes surfaces of two concentric prolate
spherolds: one 1s the wave-number surface of the vacuum case
whlle the other 1s the wave-number surface of the case of an
i1sotropic cold plasma. Hence, the results in III.A and III.B

apply silmultaneously to the present case. With the ald of
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Figures 5a, 5b, 5c¢c, and 5d we can describe the picture at

the site of a distant observer. When the source is approach-
ing, two waves, one belng denoted as ordinary and the other
extraordinary, arrive at the observer with the ordinary wave
at a higher frequency. When the source comes directly above,
these two waves coalesce and thereafter they split again
into two wilth the extraordinary wave at a higher frequency.
This phenomenon of frequency splitting is called the complex
Doppler effect.

To see physically how the phenomenon of complex Doppler effect
comes about, we resort to the group-velocity surface (Figure 5c).
Since the ordinary wave travels at a group velocity ¢ and the
extraordinary wave at a slower speed u (¢ > u > v), these two
waves which simultaneously reach the observer have actually
been emitted at different time from the moving source in 1its
course of passage through the medium. To state 1t another way,
the moving source emits at any point along its trajectory two
types of waves, ordinary and extraordinary. The ordinary wave
and the extraordinary one emitted earlier are propagating at
different speeds and at different directions, and they arrive
at the observer at the same time. The situation is clearly
deplcted in Figure 5b.

2. Hield Along the Source Motion

The phenomenon of complex Doppler effect becomes more pronounced
when the oscillating source travels along the direction of the
magnetostatic field. Equation (38), apart from the first
multiplicative factor w®/c®, now takes the form

< -%§>[(—— - k cos® @)kg 9;<EE - k§)] = 0. (40)

c
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Figure 5a. Cross sections of
wave-number surfaces for the
perpendicular case of the
uniaxial medium with X<«1.

o denotes the ordinary wave and
e the extraordinary wave.

Figure 5¢c. Cross sections of
group~velocity surfaces.

27

Figure 5b. The present posi-
tion P and the retarded
positions A, B are shown with
respect to the distant
observer 0.

gﬂe

0 /2 m

—_—

Flgure 5d. Variations of wave
frequencies with 8.



One of the branches of (40) is given by

N

2

K2 - 9 = (1-8)ef + 42
C

+¢% - 2gk g - kKo = 0 (41)

which is Just the dispersion equation of the vacuum case.
The propagating wave associated with this branch is therefore
unaffected by the medium. The other branch of (40) is

2 2, 2
(‘-(”P - kﬁ cos? @)kQ - Cﬂg—(;"-% - k§>
e R I R (R RN

This is a fourth order equatlon in g, since w = w -+ VE.
Solving (42) for n2 + g2 we have

5 o (wB/c® - gB)(wB/e? - kg)
n+C = 5,2
w=/¢

(43)

The oval and the open branch in Figure 6a correspond to eq. (43),
while the ellipse corresponds to eq. (41). At A, B, C, and D
the normals are parallel to r-vt and (r-vt)-aw,/3k > O, that is
to say, the asymptotic condition and the radiation condition

are satisfied at these points. This can be easily seen by
constructing the wave-number surface corresponding to w, + Awg,
as was done in the vacuum case. Thus, for the situation shown
in Figure 6a, all these four points contribute to the far field.
These four waves, having distinct frequencies Wps Wps Wgs and
Wiy propagate to the distant observer at different directions
as shown in Figure 6b.
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S T
>/

Figure 6a. Cross sections of wave-number surfaces
in any axial plane for the parallel case of the
uniaxial medium with X<1. A, B, C, D are the only
polnts satisfying the radiation condition and the
asymptotic condition as described in section II.B.
Ups Ugs Uss Up are the corresponding group
veloclties of the waves.

Figure 6b. The corresponding picture of Figure 6a
in ordinary space. The present position P of the
source and 1ts retarded positions A, B, C, D are
shown with the distant observer O.
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Wy 1s 1dentical to the Doppler-shifted frequency in the

vacuum case (section III.A), while w, 1s approximately given

by the Doppler-shifted frequency in Ehe case of an 1sotropic
cold plasma (section III.B). The two new wave frequencies
W and wp can be shown to be always smaller than wp, and
hence they belong to low frequency components compared to Wy

and wg-

In order to gain an understanding of this complex Dopplef
effect we shall now find the group velocity of each individual
wave. The components of the group velocity are found from

(43) to be

aw _ e (w o/, et 2 2.2 -
e T 3E T Tw (;'é‘kp>(2;§'€‘“'kp>
2, 5 a7t
= QW _ oW e el
u = 2= e ( Y- g ;) (44)
2 L -1

u? = ug +us = o2 QQE - ki)(fn - k§§2>

Here we have suppressed u,. and the coordinate (¢ because of
rotational symmetry. From (44) and (43) we can deduce the
following (Figures 6a, b):

1. at D, u§>O, un>0 and Up<vs;

2. at C, u_.<0, u >0 and uC§V depending on the relative

magnitude of X and B;

3. at B, u_<0, un>O and V<UpR<C;

g

L, at A, u§<0, un>O and u, = c;

5. Uy SUp>Ua>Up.
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With this iInformation on the group veloclties of the four
waves, we are led to the followlng explanation for the
phenomenon of complex Doppler effect. In traverslng an
ionized gas permeated by a very strong magnetostatic fileld,
an osclllating source whose motion 1s along the directlon of
the fileld emlts at any direction three waves of different
group velocitles. The "fast" wave and the "medium" wave
emitted earlier arrive at the distant observer simultaneously
and so will the "medium" wave and the "fast" wave emltted at
a later time, while the "slow" wave 1s still on its long
journey to the distant observer. Thus, 1In the early time
when the source 1s approaching, only two waves appear at the
observation point. After some time the "slow" wave will catch
up with three other faster waves emltted when the source 1is
receding, and reach the observer at the same time. From the
viewpoint of the observer the four waves appear to originate
from four different sources located at four different places.
This situation is depicted in Figure 6b.

Up to now our discusslons have been restricted to the case
where X < 1. The variation of the wave-number surface with X
is sketched in Figure 7 from which one can readily deduce how
the complex Doppler effect changes with X.
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(2) X<1

(b) X = 1

/
\

b - —— - -

(c) X>1

Varlations of Figure 6a with X for fixed

Figure 7.

k, and .
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